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Concepts and Goals

Organization-Scale Task Automation

ERA is a system for both direct and scripted control of distributed, heterogeneous
organizations. Its intended users are “casual” system managers and programmers, as well
as applications developers.

Organizations of all sizes expend considerable energy simply moving information from
one agent (person or processing element) to another. Paper mail, telephone, email, web
page transfers, database queries, remote procedure call, and discussion groups are just a
few obvious examples. Moving and routing information are important enough that
significant capital is invested in software and hardware to automate information service
tasks. Some examples:

e A voice mail system is purchased to lighten the workload of receptionists

e A public web server is purchased to lighten the load on sales and support staff

e An internal file server is used to make information resources more readily
available within the organization.

These are just a few examples of task automation in which a previously human-intensive
activity is replaced by an automated agent, to the benefit not only of the organization but
sometimes also to other agents with which it interacts (customers, suppliers, etc.).

Conventional non-distributed task automation, while not always easy, is already handled
as well as one might expect using existing scripting languages, and ERA makes no
attempt to compete in these problem spaces. Scripts that can run as ordinary programs on
individual computers can be written in Perl, Python, VB, WebL, Rebol, or a host of other
languages, and these scripts can be launched from the shell (window system) or from an
application. Also in the arsenal are ASP, JSP, and PHP to improve the functionality of
web servers, Javascript for web page enhancement in browsers, and Java for use in nearly
every niche.

The gap ERA tries to fill has to do with organization-level tasks as opposed to agent-level
tasks. ERA coordinates the activities of multiple agents by using scripts to direct the
transfer of information between them. ERA expects any substantive processing to be
done by conventional agents, people, application programs, or conventional scripts (as
described above). The tools provided by ERA focus solely on the question of who talks to
whom and how. ’

The thesis is that organization-level task automation is easy for the casual programmer -
someone who doesn't know or want to know the details of agent connection and
communication - to conceptualize, but difficult for the application programmer
committed to using a conventional scripting technology to implement or conceptualize.
ERA is a distributed control system from the outset, as opposed to Java, for which




serialization, RMI, and Jini are an afterthought. ERA specializes in moving information
around so that it can be processed by appropriate non-ERA agents.

Heterogeneous Organizations

ERA is concerned with controlling organizations that are intrinsically distributed. ERA is
not designed for the purpose of simple single-host scripting, or even of taking a single-
host program and distributing it for performance reasons. It could be used that way, but in
any such situation it is likely that there is a more natural solution (e.g. a Java program is
probably best distributed using RMI or Jini). We focus on the situations where
distribution is inherent for one reason or another: administrative, legal, contractual,
historical, security concerns, etc., and where the agents to be coordinated are of such
different kinds that communication of any sort is the primary concern.

The agent to be scripted need not even be a computer. A human receiving email from a
program saying that a situation resembling a server break-in has occurred, and could they
kindly look into it and reply with some kind of report is effectively acting as a
“subroutine” of that program, and the person who wrote the program has used the human
who responds to email as they would any other agent. This view lends itself to the
incremental replacement of manual operations with automated ones, since the structure of
the organization as articulated by ERA doesn't change when a human's time is freed up
by automation.

Casual Programming

ERA is based on a certain theory of its customer, the casual programmer. It assumes that
the casual programmer is problem-driven rather than technology-driven. The casual
programmer would prefer to start out by saying in general terms what coordination needs
to be done, and only afterwards to explore available technology to determine exactly how

to accomplish it.

The general terms provided by ERA describe patterns of communication between
components. The details of exactly what those components are, and what they say to one
another, are filled in after the overall shape of the desired communication network is

known.

Our model of the casual programmer's use of ERA is as follows. The programmer
approaches an ERA control program, probably a GUI, and begins building a description
of a desired network. There are two ways to do this: by direct manipulation of wiring
diagrams, and by writing scripts. These two modes are equivalent; communication
patterns are easier to visualize in graphical view, but scripts provide a more concise and
familiar notation for many familiar operations. The script compiler generates wiring
diagrams and performs some useful bookkeeping and helps to generate networks that
move information to where it is needed.

Supporting a problem-driven. attack on the programmer's problem, ERA allows the
construction of network diagrams in advance of specification of component and
communication details. Perhaps some initial debugging can occur at this stage with



“mock-ups” of components. The details are filled in through a process of discovery and
refinement.

The discovery process is guided in part by type information -- e.g. by declarations
(through the GUI or the scripting language, or by type inference over the network) that a
certain kind of message or document will be transmitted over a communications link.
Given a clue such as document type, a library of utilities can be consulted to find out
which available components are capable of understanding that document type. If there is
a mismatch between the type of the messages to be transmitted and the type of the
messages understood by the recipient, a new component may be interposed (or requested)
that converts from one type to the other.

Protocol may also be guided by a discovery process, although the choice of protocol will
usually be determined by the choice of components being used. Change of protocol -- for
example, to get through a firewall -- might be accomplished by the introduction of
protocol converters.

Deployment decisions are in principle independent of component and protocol decisions,
but they will often be dictated by location constraints on components -- e.g. a database
server that is to be part of the network might already be “pinned” to a particular host, as a
result of decisions that are not up to the ERA user/programmer. '

No decisions about a system should be final. A system may be modified while it is running.
Components may be replaced, rewired, or relocated as needed.

Analysis

The analysis given here is both descriptive, interpreting the world in a certain way, and
prescriptive, encouraging a certain approach to structuring certain engineering artifacts.

We take the existence of the computational world as given, and are concerned about how
to understand and influence this computational world in order to bring about desired
effects. This stance contrasts with that of classical engineering projects in which a new
artifact is built that has its own intrinsic logic and a definite boundary. Like the Internet
and the world economy, ERA is conceived of as an open system.

By “the computational world” we mean everything that might be observed or controlled
by computers. The computational world is naturally thought of as a set of discrete agents
connected by communication links. The agents are computers and the items that they
observe and control, and the links are a combination of point-to-point cables and multi-
point “ethers” such as radio (or optical or audio) frequency bands and multiple drop
cables. The Internet is part of this computational world, as are local area nets, copper and
cellular telephone systems, etc.

Because people interact with computers, this definition implies that people who interact
with computers are agents, and part of the computational world that ERA might be
prepared to deal with.




Agent Composition

The granularity of this abstract analysis can be varied according to need. A collection of
agents or links may be composed and treated as an individual, or a single agent or link
may be multiplexed and treated as if it were multiple agents or links.

For example:

e A single computer system, composed internally of multiple agents (CPU, memory
system, disk, network card), might be observed on the Internet to be a single

entity with no discernible internal structure.

e A data bus with many signals running in parallel is logically treated best as a
single wire.

e Time-sharing makes a single CPU appear to be multiple computing elements.
A single physical Internet link is equivalent to multiple virtual communication
links when bandwidth is time-shared among multiple TCP connections.

This view is clearly important from an agent engineering perspective, since composition
and multiplexing give us ways to think about forming new agents from old ones.

Connections
The most important aspect of an organization consisting of communicating agents is who

talks to whom. When one agent is talking to another, or has the capability of talking to
another, then the agents can be said to be connected, or that there is a link from one to the

other.

Communication links come and go, so connectivity changes over time. Important
organization-level questions about connectivity include the ways in which connections
are formed and broken, the ease with which a connection is formed or broken, and the

duration of connections once formed.

The two principal potential starting points in developing a model of the computational
world are the network model and the arena model.

Network (actors) model

In the actors model of computationl’z, connections are formed only through introductions.
If an agent X is connected to agents Y and Z, then X may introduce Y to Z, allowing the

' Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems,
Artificial Intelligence Series, MIT Press. 1986.

2 C. Hewitt. Viewing control structures as patterns of passing messages. Journal of
Artificial Intelligence, 8(3), 1977.



formation of a connection from Y to Z. In doing so, X may or may not retain its
acquaintance with Y; if it doesn't, the transfer is a handoff.

Arena model

The model may assume an arena -- that is, an institution, facility, or space acting as a
commons or meeting place -- in which agents may encounter one another. Who
encounters whom follows a policy or matchmaking rule implemented by the arena. The
rule may be based on random encounter, proximity, availability, template matching,
addressing, etc. The analog in nature and in society is mobile agents (molecules,
organisms, people), which encounter one another as they move through space, and may
on occasion interact. A relationship so initiated, such as an encounter with a store clerk,
may be either transitory or durable.

In developing a theory of agents suitable as a unified basis for implementations of useful
services, it is necessary to decide which of these models is to be considered to be
fundamental. Each has its merits and its applications, so it is worth considering each as a
starting point.

ARLENA MODEL

Realism. The arena model accurately describes many real-world organizations, in
particular those in which agents do not fully control their own location or connections.
Some examples:

e Solutions and suspensions in fluid media, such as molecules in cytoplasm or
plankton in water. Molecules collide with one another at random; a copepod
encounters food according to the whims of current;

e Mobile agents in open spaces, such as shoppers in a business district or vehicles
in a road network. I do not decide which stores will be in business or which
vehicles I will encounter while driving.

Anonymity. The arena is characterized by anonymity and interchangeability. If I am in a
strange town and I need a pharmacist or locksmith, I can wander about until I find one
(“discovery”). I do not need to know the name of an entity that merely satisfies a role.
Parts interchangeability promotes fault tolerance, since a relationship broken due to
failure of competence or communication can be replaced by another equivalent one from
the arena.

Specificity. An arena may permit the simulation of specific communication links if it has
sufficient specificity in its matchmaking capability. If I am in town and want to
communicate with my pharmacist instead of just any pharmacist, I might

e Wander about until I see an agent that I can identify to be my pharmacist (by
name, appearance, challenge/response, etc.),
e Sit still and wait for my pharmacist to come by,




e Communicate over a broadcast medium, assuming that messages to my
pharmacist can be specific enough that everyone other than my pharmacist will
ignore the messages, or

e Drop a letter in a mailbox (if the town has a postal system), assuming that the
address on the envelope will determine which agent or agents will receive the
message.

The last case is a special one, and describes a kind of arena that might be called a
switching network. Well-known switching networks include the world telephone
system(s), in which the telephone number entered influences the arena to direct further
messages to a particular destination, and the Internet, in which the destination address
field of a packet influences the arena to direct the packet to a particular intended

destination.

NETWORK MODEL

Realism. The world is geometric. For the most part, things that communicate actually are
either next to one another or connected physically by an information conduit (broadcast
media being the big exception). The notion of connection gives a way to talk about
structured agents (my hand is connected to my arm) that is not natural in the arena model.

Anonymity. Unspecific interaction can be simulated here as just one particular kind of
agent, linked to all the agents that are “in” the arena, and introducing them to one another
according to whatever rule it considers appropriate. For example, a broadcast packet on a
LAN can be seen as a transmission to a particular “LAN” agent, which is capable of
addressing any machine that happens to tap into the LAN. This may be more than just a
formal fiction forced on our thinking by a desire to use a network model, as the LAN may
actually be built physically using point-to-point connections to hardware devices such as

hubs and switches.

There may be multiple arenas in the organization that we wish to describe or build. For
example, in a network exploiting radio frequency cells, each cell is its own arena. If an
arena is just another agent, we can express concepts, such as connectivity between arenas
that are difficult to think about when we think of the computational world as being, a

priori, a single arena.

The value of a network model is its implicit specification of which agents do not talk to
one another. By observing that there is no link from A to B, one can deduce that the
behavior of B cannot be directly affected by that of A. The network makes organizations
easier to understand and debug by articulating the limits on potential interactions between

agents.

In ERA, the computational world is viewed as a network, not as an arena. Arenas, in the
form of “discovery protocols” and “directory services”, are an essential piece of the ERA
design, but we have not yet focused on their development. In the future, arenas will be
taken to be agents of a certain special sort, embedded in a communications network

alongside other agents.



UNINTENDED CONSEQUENCES

Unintended consequences arise from unplanned connections. If I wander around a public
place, I may meet someone and strike up a conversation. Doing so is risky, and I put into
place a number of complex mechanisms to reduce the risk; e.g. I can find out whether
they and I have any common background or acquaintance. If they ask for money or
threaten me, I can sever the connection by walking away. But the risk may pay off,
because they might give me sightseeing advice or stock tips, or become a lifelong friend.

The arena metaphor describes unintended meetings more directly than the network
metaphor. We do not ordinarily think of rooms, train stations, or cities as being “agents”.
But they serve the same kind of function as agents such as stockbrokers, dating services,
bulletin boards, and advertising-laden artifacts such as newspapers.

Unintended consequences are messy, and both professional and amateur engineers try to
minimize them. Even if an encounter has the potential for benefit, an automated system is
very unlikely to be propetly receptive to unexpected input. Because ERA was conceived
as a system for the control of agent organizations through scripts developed by casual
programmers, ERA has always been more interested in minimizing interactions by
managing point-to-point relationships between particular agents than in maximizing
interaction by arranging accidental encounters.

DATA FLOW

When one agent says something of importance to another, we can say that information
(or data) flows from one to the next. In this sense, “data flow” is a trivial observation
about what happens in the world, not a particular commitment regarding the way that
particular organizations are or should be programmed.

The term “data flow” calls to mind the data flow programming model, developed as a
parallel computing architecture by Jack Dennis and Arvind at MIT and adapted for use in
image processing and other arenas by others (Hicks, Onanian, etc.). In this model, each
agent (processing element) waits until it has received sufficient information for it to be
able to take some action. Taking action consists of performing a computation on its
inputs and forwarding results to downstream agents.

For example, a processing element that knows how to multiply waits until it has both
operands, which arrive individually. When both operands have arrived, it multiplies
them, transmits the product to another processing element, and waits for further input
pairs.

It is instructive to compare data flow graphs with call graphs. In a call graph, two parts of
a program (subroutines) are linked if one calls the other in order to accomplish its task. If
A calls B and B calls C, then there are links from A to B and from B to C. The
corresponding data flow graph might have links A - B - C - B - A, but a more fine-




grained data flow graph might have links Al - B1 - C - B2 - A2 where Al and A2 are the
parts of A that precede and follow (resp.) the call to B, and similarly for B1 and B2.

If B has any caller other than A, then the link from B2 to A2 will be dynamically
mediated by a “switching network”. B2 communicates with a switching network that
knows how to route the data flowing out of B2 to the appropriate recipient. In this case
the recipient is A2, since the data received by Bl from Al necessarily includes “return
address” information specifying A2.

ADDRESSING

The comparison between network and arena is through the concept of addressing as
implemented by a switching network.

Addressing is a fundamental, if not fully articulated, mechanism in the class of
“reference-oriented” programming languages. Reference-oriented languages include any
language that features objects to which one may obtain a pointer, unique identifier, or any
other kind of name or address. Object-oriented and higher-order (that is, functional)
programming languages are special cases, but even languages such as C and Pascal have
pointers. In these languages agents deal in references to other agents, so that the choice of
communication partner may be determined by a previously received reference. If an
agent has the name of another agent, it is effectively linked to that other agent, by means

of the switching network.

In reference-oriented languages, we don't normally think of pointers as being names. This
is because the programmer never sees these names, due to an additional level of
indirection. A subprogram might at some time call a particular object X, but the object's
name isn't X; X is just a variable, and might mean a different object at a different time or
in a different subprogram. But if you look under the hood, you will see that within a
single computer's address space (RAM), objects do have definite addresses (perhaps
changed systematically by a garbage collector), and in a distributed system (such as Java
VM's linked by RMI) objects necessarily have names, so that references to them can be
transmitted over a communications link as a definite sequence of bits.

Although we generally think of a reference-oriented system as having only a single
switch or dereferencing mechanism, some additional structure can be imposed (that is,
potential communications ruled out) if the space of referenced agents can be partitioned
into multiple species or types. For example, if using a static type system, one can
determine that some points where references are used will always possess references to
cows, while other such points will always possess references to sheep, then each point
may be classed as a cow use or a sheep use, and can be connected to a specialized
switching network (separate address space / address bus) as appropriate.

THE NETWORK MODEL AND THE REAL WORLD

For an agent control system to be useful, it must be capable of interacting with
(controlling and being controlled by) agents that users want to deal with, including



relevant applications, frameworks, clients, servers, and protocols. The ideal system would
understand all the major Internet protocols (especially HTTP and SMTP), object
protocols (IIOP, RMI, FIPA), message representations (Java serialization, HTML, XML),
directory and discovery protocols, programming languages, operating systems, file
systems, databases, and applications. In order to control the computational world, one
wants a distributed super-shell.

Mapping these notions onto our network model, we have something like the following:
Concept Real World Analog

Agents application programs
subroutines

“objects” (sensu OOP)
peripheral devices
people

Links TCP connection

address space (RAM)
object reference

bit

number, character, string
record

Messages packet

document

address space (RAM)

tuple space (e.g. Javaspace)

Switching Agents WAN-IP

WAN-STMP

LAN Broadcast

JINI discovery protocol

Arena agents EM broadcast (infrared, radio)
newsgroup

Table 1. Realization of ERA Concepts




ERA Implementation

The initial implementation of ERA produced a Scheme-based, prototype ERA server,
capable of hosting nodes in ERA-described agent networks. The Scheme-based ERA
server interprets the scripting languages ERASE and DERAIL, in which ERA networks
are expressed. The linguistic infrastructure related to ERASE and DERAIL is described

below.

A Java-based ERA server was subsequently implemented, incorporating network design
principles acquired during the scheme-based implementation (e.g., the use of to do lists to
achieve optimistic concurrency control). A user manual for the Java-based ERA server
and the companion visual editor (VERA) are included in Appendix 2.

Overview of Capabilities

The capabilities offered by ERA can be categorized as follows:

e “Life support™: facilities for daily operations. This includes a family of predefined
node types; a routing infrastructure so that messages can get where they're
supposed to go; two agent naming systems; handling of exceptional situations;
initialization; and checkpointing.

“Life cycle”: operations for deployment, migration, debugging, and edits.

[ ]

e Linguistic capabilities: the scripting languages DERAIL and ERASE.

e A Java-based ERA server, whose manual appears in Appendix 2.

e The visual editor (VERA) and event log UI, also shown in Appendix 2.
Operations Infrastructure

ERA provides a “wiring” or “glue” infrastructure for flexible coordination of a
population of agents. The infrastructure shuffles messages around, providing
transmission and routing services.

Predefined Nodes and Wiring Patterns

A basic meta-operation of ERA is to establish or disestablish a communication link going
from a particular output of one agent to a particular input of another. Given a suitable
population of agents, successive applications of this connection meta-operation can create

arbitrary interconnect topologies.

For all other kinds of network wiring, ERA enables the creation of a variety of generally
useful glue nodes. Some of these nodes are blind to message format, simply shuttling
uninterrupted information around, while others are capable of combining and splitting

messages in interesting ways.
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The main purpose of glue nodes is to treat wiring and routing separately from the
processing performed by an agent population. Many processing agents, including many
non-ERA applications, can be incarnated as ERA filters, with all the non-linear (i.e. non-
filter) aspects of the overall agent network handled by a small number of standard non-
linear glue nodes. If nothing else, this strategy simplifies the scripting language, which
can deal exclusively in filters, relegating non-filters to the network structures into which

the scripts translate.

Shuffling

The simplest of the glue nodes simply shuffle information around without manipulating it
at all. Four of these are defined:

id
An identity node: It simply sends out any message that it receives, effectively splicing
its incoming link to its outgoing link.

merge

A merge node has two inputs (incoming links) and one output. Any message received
on either input is transmitted to the output.

copy

A copy node has one input and two outputs. Any message received on the input is
transmitted to both outputs.

to-either

A to-either node has one input and two outputs. Any message received on the input is
sent to one of the outputs. If an output is blocked because the node connected to it is
busy, the message will be sent to the other output (assuming it isn't blocked as well).

to-ground

A to-ground node has one input and no output. Any message received on the input is
simply discarded.

from-ground

A from-ground node has no input and one output. Nothing is ever written to the
output.

spew

A spew node has one input and one output. The node emits a particular message in a
steady stream. The particular message that is emitted is simply the last message
received as input.

11
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Figure 1: Glue Nodes for merging and diverging

Coupling and decoupling

The built-in operations of coupling and decoupling form and split message pairs
(couples). An operator such as addition might receive a single message containing a
couple of numbers as input, and emit a single number as output. The couple can be
created from messages arriving on two different connections using external wiring (a
couple node). An application desiring to forward two pieces of work to different
destinations might emit a single message having two parts, and then rely on external
wiring (a decouple node) to split the message and route it to the two destinations.

In the Java implementation (Appendix 2), the couple concept is generalized to tuple,
which is analogous to a vector or array.

couple

A couple node has two input connections and one output. When two messages have
arrived (on the two inputs), a single message (a couple) is emitted whose two parts
are the two input messages.

decouple

A decouple node has one input and two outputs. When an input message (a couple)
arrives, it is split into two parts, and the parts are emitted as separate messages on the

two outputs.

left

left is a filter that extracts the left part of a message (in the usual way).
right
right is a filter that extracts the right part of a message (in the usual way).

commute

commute is a filter that exchanges the left and right parts of a couple.

12
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Figure 2: Glue nodes for coupling and decoupling

ERA uses the XML syntax <couple> A B </couple> for the couple of A and B, but other
representations might be allowed in addition or instead, depending on the encoding scheme or
protocol chosen for the particular communication link.

Making and interpreting choices

It is often necessary to divide a single message stream out into multiple message streams
by sending some messages one way and some a different way, with the choice made on
the basis of some aspect of the message. This common abstraction describes both
switching systems (routers, memory systems, etc.) and conditional statements in
programming languages (if).

ERA provides glue nodes both for making two-way routing decisions based on a single-
bit label (i.e. address), and for affixing a one-bit label so that a subsequent discrimination
will be made in the desired direction.

The basic discrimination and labeling operations will generally be used in conjunction
with other operators. For example, to discriminate between even and odd numbers, a
filter may be used that converts numbers into the canonical labeled form required of the
primitive discrimination node. Labeled messaged will then exist only ephemerally, and
might even be compiled away entirely The arbitrary names “yes” and “no” are used to
denote the two one-bit labels used here.

x ves (x) yes (x) X
or no(y) or no(y) ’/ﬁ
muy |fp———» ———— choose

Y \“L-_;

Figure 3: Glue nodes for choices

mux

Two inputs, one output. A message arriving on either input is relayed to the output,
with a yes or no label affixed according to on which input it arrived.

choose
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One input, two outputs. The label on an arriving message is examined. The label is
removed, and the resulting message is shipped off to one output or the other
depending on the classification.

yes

A filter that labels its input with a “yes” label. (Behaves the same as a mux node with
grounded “no” input.)

no

A filter that labels its input with a “no” label. (Behaves the same as a mux node with
grounded “yes” input.)

not

A filter that inverts the yes/no labeling of a message. Two not's in a row are an
identity filter (for yes/no labeled messages).

distribute

Moves a label from the left part of a couple to the couple itself. For example, if the
input is a couple of a yes-labeled message x and a message y, then the output is a yes-
labeled couple of x and y. (This is an operator used in networks produced by the
ERASE compiler and impossible to synthesize from the other glue operators given

here.)

distribute ((yes(x),2z)) = yes(x,z)
distribute((no(y),z)) = noly,z)

ERA uses the XML syntax <yes> A </yes> for a “yes”-labeled message, and <no> A
</no> for a “no”-labeled message. Many other representations, such as a single bit

prefixed to a message, are possible.

Iteration

Networks of simple filters and glue nodes can be used to build both networks that iterate
and networks that remember.

A network with a filter in between merge and choose nodes that are wired to one another
cyclically results in an iterative process. The iteration proceeds as long as the filter emits
yes-labeled messages (“yes I would like to continue iterating”), and finishes when the
filter emits a no-labeled message (“no thanks, it's time to stop now”).
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State

Nodes corresponding to application programs and other non-ERA entities may contain
their own local state. For example, a file system has file and directory contents as local
state. However, it is possible to use ERA glue nodes described above to create state-
bearing networks that do not require the use of non-ERA entities.

This is accomplished in a manner very similar to iteration. This time, however, the action
filter combines (using a couple) its input with a “state message” stored in the network,
and delivers a result that couples the value to be delivered (e.g. some information
computed from the state) with a new state (perhaps the same as the old state). The left
part of the couple is emitted from the cycle, while the right part feeds back to the couple
node. When the filter is not active, the state resides on the arc running from the decouple
node to the couple node.

{y,s’)

i<filter> :decanplef

Figure 5: A stateful network

Tasks

There is no guarantee that message pairs arriving together at a couple node are related to
one another. Certain flow patterns, such as a copy connected to two arrows (filters) that
connect in turn to a couple, will tend to pair outputs that are computed from the same
input, but this is not guaranteed if either arrow is ill-behaved -- say, if it fails to emit an
output every time, or if it emits multiple outputs for a single input.

Because it is often important to assure that outputs produced from related inputs are

paired with one another and not with those produced from unrelated inputs, ERA
provides a rendezvous facility that assures such proper correspondence. Before two paths
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diverge, a unique “task id” 3token is generated and stored in the memos transmitted on
the two paths. Where the paths converge again, memos are paired with one another
according to their task id's. Memos may arrive in any order. Excess unmatched memos
represent aborted or stale tasks or runaway recursion, and are disposed of.

The following glue node types implement this task rendezvous mechanism:

fork

One input, two outputs. Behaves the same as copy with respect to the message
content, but the output messages are memos with a non-content field containing a
freshly generated task id. (Actually, the task ID is pushed onto the memo's

<continuation> field.)
join

Two inputs, one output. Behaves much like couple, except that messages are matched
with one another according to their task id's.

Surprisingly, in addition to dealing with faulty or ill-behaved components, the
rendezvous mechanism also implements recursion. Recursion happens whenever a named
agent obtains a reference to itself and re-enters before delivering an output. Suppose that
the recursive re-entry occurs on one branch of a fork-join network. Values computed by
the other branch will pile up the join node, waiting for their partners, which eventually
arrive -- in the opposite order -- when the recursion bottoms out.

Abstraction, Naming, and Reference

ERA Naming Schemes

ERA natively understands two naming schemes: high-level, programmer-friendly names,
and low-level switching network names. Programmer-friendly names are chosen by the
ERA programmer and are scoped to a particular scripting environment, module, or
library. The same programmer-assigned name may be given by different programmers (or
modules, etc.) to different agents, and one agent may have multiple programmer-assigned
names (different names to different programmers). Switching network names, on the
other hand, are assigned and understood only by the switching network. Their purpose is
to uniquely specify an agent in a context-independent manner.

In order for programmer to assign a name to an agent, the agent must first have a
switching network name. At present such names are obtained in one of two ways:
through the use of procedural abstraction (curry in DERAIL or lambda in ERASE), or
through the basic script-structuring constructs (defderail in DERAIL, deferase in
ERASE). Once a switching network name is obtained, a programmer-friendly name can

3The Java implementation of ERA (sec Appendix 2) makes use of task ids more generally, associating a task id with cvery
message to allow simultaneous execution of parallel tasks in the same workflow.

16



be assigned via a namespace operation. The defderail and deferase constructs perform
both functions.

Exposing low-level agent names in this way is probably an unfortunate design choice, as
it is likely to be confusing to our target audience and impossible to hide. In retrospect, it
might have been better to use a more direct, low-tech, single-level approach to naming.
Two-level naming is traditional in pointer-based programming languages such as Lisp
and Java, however, and it does have benefits, which may in the end may make the added
complexity worthwhile.

Abstraction: Named Agents

Low-level naming in ERA is accomplished by connecting certain named agents to a
switching network (such as the Internet). The named agents must be filters -- that is, they
must have a designated input and a designated output. The switching network delivers
messages from various sources to the named agent's input, and from the agent's output to
various destinations.

A named agent can be “used” by multiple other agents, in such a way that the “reference”
to the named agent appears to be a filter embedded in a network. If A is a named agent,
and there is a pipeline X - ref(A) - Y, then an output that A computes as a result of a
request from X will be delivered to Y, not to some Z occurring in a different network
ref(A) - Z.

How do agents acquire names? And how are those names interpreted?

Agent names in ERA are a little more sophisticated than just addresses interpretable by
the switching network. Before examining the particulars of low-level ERA naming,
consider the case where the switching network is the Internet. Should a name be:

e an IP address (meaning there is at most one named ERA agent at any particular
host)?

e IP address plus port number (meaning that each named ERA agent at a host must
have its own port and outstanding Internet “listen”)?

o IP address + port + ERA-specific connection name (allowing a single ERA server
process to receive messages on a single port for multiple ERA agents)?

o IP address + port + ERA-specific name + application-specific name (allowing an
ERA agent to decode an address and act as a sub-switch in its own right)?

An infrastructure of network applications will generally have a hierarchy of switching
networks, and it is impossible to say definitively which entities are networks and which
are agents. Thus the question of where a “name” ends and where “additional identifying
information” begins (the line drawn in different ways in the above scenarios) is really
something that should be hedged, so that we have the flexibility to choose whatever
addressing scheme we like.
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ERA's agent naming mechanism assumes that any named agent may want additional
information to be used for some private purpose -- information that only the agent can
meaningfully interpret. (The information may be coded or encrypted, for example.) The
naming mechanism always allows for the presence of such information, and if an agent
doesn't need it, the information can be null and/or ignored. The above discussion implies
that the information will be used for the naming of sub-agents, but it could be anything at
all. For example, an application involving web browsers could use the private
information to identify user-specific preferences or other context. This usage actually
isn't so different from naming after all, since this arrangement causes a single agent to act
as if it were multiple agents specialized to particular users.

A ticket for a switching network N is a datum that encapsulates the name of a named
agent together with private information that is to be delivered to the named agent. Tickets
are created by curry nodes and interpreted by call nodes. Agent names are assigned by
curry nodes and decoded by call nodes in such a way that each agent associated with a
curry node obtains a distinct name.

curry

When given a message P, a node curryn(A) emits a ticket. The ticket will be
meaningful to the switching network N as a name for agent A. The message P will
become the private information in the ticket, and will be supplied to A at the point
where the ticket is used.

call

A cally node hands its input, which should be a (ticket, argument) couple, over to the
switching network N. The network N decodes the ticket, and delivers both the private
information and the argument to the named agent as a couple (private, argument).

ERA uses the XML syntax <ticket> ... name and private info ... </ticket> for tickets.

Continuations
A major difficulty with reference to named agents in ERA's distributed data flow

framework is how the named agent A is to keep track of its continuation, i.e. how it
knows to send the output of A in a network ref(A) - Y to Y and not to Z (occurring in
ref(A) - Z). Clearly a description of the continuation must be transmitted to A for use
when A needs to deliver its result somewhere. There are several different ways in which

this might be accomplished.

Assume that A has a single node for receiving input, Agan, and a single node that
transmits output, Agnish. Here are some ways in which the continuation might be

communicated from Agart tO Afinish:
1. Agar could transmit the continuation, via an independent path, directly to Afinish.
When the result message catches up with the continuation, Afnish gives both to the

switching network for processing.
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2. Agar could remember the continuation, and Afnish could route the result back to
Astart for final transmission to the next stage.

3. A could transmit the continuation on to its successor(s), and the entire network
for A propagates it on for use at Afinish.

Which strategy is best depends on the particular situation. The current ERA system
implements strategy 3, since it requires no special wiring or internal state, and is therefore
the most fault tolerant of the three.

To implement this, every message transmitted between the internal nodes of a named
agent is actually a memo, which is a record containing multiple fields. The <content>
field of a memo carries the information to be considered the primary input or output of
the node receiving or emitting the memo. The <continue-with> field carries the
continuation for the named agent. The continuation is ordinarily passed through an agent
unaltered. When the final output of a named agent is emitted, the switching network
examines the <continue-with> to decide to which referring agent the result should be
directed.

Since applications of named agents can nest to arbitrary depth, the continuation is
potentially a list of return points of arbitrary length. It might be nice if continuations
could be passed by reference instead of value, so that this stack structure was hidden.
Hiding the stack would make memos smaller and might improve both security and fault
tolerance.

ERA Servers

An operating system level process that understands the ERA network protocols and
behaves as a fully functional part of the ERA world is called an “ERA server”. The initial
prototype server is a body of Common Lisp and Scheme code that runs under Harlequin
LispWorks (although earlier versions have run in Allegro Common Lisp and in Scheme
48). The Java-based ERA server is described in Appendix 2.

An ERA server is capable of hosting nodes in ERA-described agent networks. That is,
when asked to deploy a node of species x (for example, choose), it will do so. Nodes that
are not connected to other nodes are implicitly connected to the local TCP/IP network
(usually the Internet). Such nodes may send and/or receive messages over the Internet
using the ERATIC network protocol.

An ERA server listens on a single TCP/IP port (a configuration parameter; default 6765)
and responds to two kinds of messages: memos directed at particular nodes, and meta-
messages directed to the server itself. The server is multithreaded and handles many
nodes, and therefore uses a scheduler, with locking. An optimistic concurrency scheme is
used, resulting in a robust implementation.

Checkpoint Facility

Persistence of ERA nodes is managed in a very simple manner. Each server supports a
population of nodes. A server may checkpoint that population, with their internal state, at
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any time. This is accomplished in the most brutally unsophisticated manner possible. All
activity is halted, and all of the nodes are written to a file, in XML form. A small amount
of other server state is also written. The server may then be shut down, if desired.
Regardless of whether a shutdown was clean or not, a server may be restarted at a later
date based on the contents of the most recent checkpoint file.

The XML representation of a node contains

e the node's species (couple, choose, imported, etc.)

e its static parameters (the value of a constant for a constantly node, or the name of
a Scheme function for an imported node)

e information about each of the node's mailboxes

Each mailbox belongs to exactly one node, so mailbox information only inside node
descriptions. Mailbox information consists of

the mailbox's handle (unique identifier)

the contents of the mailbox, if any

type information of any messages deposited in the mailbox

a handle naming the mailbox's peer, if any (another mailbox)

Other information written to the checkpoint file: TCP port number, unique id prefix (in
case the uid server is unreachable on restart), handles for lookup and assign agents for
local namespace.

Life Cycle Infrastructure

All directives involving network structure, initialization, finalization, debugging are
handled by meta-messages transmitted to ERA servers using the ERATIC protocol. Most
of these operations originate in response to a command issued in the GUJ, but as they are
communicable over the network, they can in principle come from anywhere.

Initial Deployment
Node networks created by ERA are deployed either in an explicitly declared location

(ERASE deploy-with or DERAIL @f), or in a default location, namely the ERA server
hosting the ERASE or DERAIL compiler that compiled the script specifying the network.

RELOCATION

Nodes may be moved subsequent to their initial deployment. A programmer may choose
to do this for load balancing reasons or to correct an erroneous initial placement decision,
moving a node from where it cannot successfully perform an operation to a different

server where it can.

Deletion can be thought of as a special case of relocation. Deletion is mnot yet
implemented, but would be necessary for ERA to be complete - otherwise useless nodes

would accumulate and clutter up the servers.
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STATIC WIRING

A link may be established (or deleted) from an outbox on one node to an inbox on
another node.

OTHER META-OPERATIONS

Here are the things that you can ask an ERA server to do.

o Examine or erase the contents of a mailbox. An inbox may be occupied if its
owner is busy or not yet ready to run. An outbox may be occupied if its contents
cannot be communicated to its destination, either because of communications link
failure or because the target inbox is already occupied. This operation is used by
the node-viewing tool.

Provide detailed debugging information on the internal state of a node.

Tell which ERA server is currently the enterprise-wide name server.

“Ping”: Tell whether this particular ERA server is up.

Shut down this ERA server.

Write a checkpoint of the server's state to a disk file.

Linguistic Infrastructure
The Combinator Language (DERAIL)

DERAIL is a low-level combinator language for describing certain agent networks. A
DERAIL script consists of a sequence of directives whose purpose is to establish a
scripting environment -- that is, the definitions of a related set of names. A defderail
directive defines a name to refer to a particular agent, where the agent is described using
the combinator language described below. For example:

(defderail silly (pipe left yes))

causes the name silly to refer to an agent consisting of a left node whose output connects
to a yes node (i.e. silly((x,y)) = yes(x)).

Each phrase in the combinator language denotes an agent network. The networks
describable in DERAIL are all arrows -- that is, they are agents with a single input and a
single output. Basic phrases such as yes denote simple built-in arrows, while more
complex networks may be built using various constructors.

A summary of DERAIL:
(pipe f g)

denotes the network where f's output is wired to g's input.

(pipe fgh..)
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the obvious generalization. Also, (pipe f) is f, and (pipe) is id.
(coupler f g)

denotes a fork-join network with fand g as the two branches.

(chooser f g)

denotes a choose-merge network with f and g as the two branches.

(iterate f)

denotes a cyclic merge-choose network in which one of the choose outputs is wired to
one of the merge inputs.

(statefully f init)

denotes a cyclic couple-copy network in which one of the copy outputs is wired to
one of the coupleinputs. (It's a bit more complex than that as there has to be a way to

~ inject an initial value into the network (otherwise the couple node will starve); this
involves attaching the init network using a merge node.)

id left right commute yes no not distribute call cocall
denote simple built-in arrows.
ignore

On receiving an input message, an ignore arrow discards that input and emits a null
message.

(constantly <message>)

On receiving an input message, discards that input and emits the message denoted by
<message> (for example, a number or string).

(imported <scheme>)

denotes a node that delivers an output that is the result of applying a user-supplied
program written in the Scheme programming language. For example:

(imported (lambda (x) (* x x)))

designates an arrow that on receiving a number emits the number that is the square of
that number.

(@f arrow place-agent)

denotes an arrow deployed at a particular place. (@f x y) behaves the same as x, but
the arrow will reside at the ERA server that hosts y. y may name any agent. (Sorry
about the horrible name. This is the primitive used by the ERASE deploy-with

construct.)




The imported construct is quite important, as it is at present the only way for ERA to
control anything outside of ERA. For example:

(scheme
(define (http-fetch url)
;; OPEN-URL is part of the ERA implementation.
(open-url url #f (lambda (status-code headers iport)
(list->string
(Iet loop ()
(let ((c (read-char iport)))
(if (eof-object? ¢)
0
(cons ¢ (loop)))))))))

;> Define HTTP-FETCH to be an agent in the current script.
;> Each incoming URL is converted to the content of a document fetched

;; from the Internet via HTTP.
(defderail http-fetch (imported http-fetch))

The Expression Language (ERASE)

ERASE is a scripting language that, unlike DERAIL, resembles an ordinary
programming language. It has constants, variables, binary operators, calls, conditionals,
and other familiar constructs.

Despite appearances, however, ERASE programs denote arrows (filters) in a manner
similar to DERAIL programs. An ERASE expression is interpreted as an arrow whose
input is a record containing the definitions of variables that are needed in that expression.
For example, (+ x 7) is an arrow whose input is a message giving the value of the
variable x and whose output is x plus seven.

S0 XY (a-x)

{a,x) ’
copy

F 1 gure 6: Network for (*x (-2 x))




The record (message) holding free variable values is called an environment, although
there is nothing special about it that would distinguish it from any other kind of message.
If there is only one free variable, the environment is simply that variable's value. If there
are N variables, the environment will have N-1 couples holding the N values.

The network for a simple ERASE expression will generally have two parts. An incoming
environment feeds into a distribution network, which copies and erases different parts of
the environment as needed to direct the correct values to all of the nodes that will need
them. The distributed values then feed into a computation network - essentially the
expression's parse tree. Intermediate values filter out to the root of the parse tree, and the
final value is emitted at the root.

More advanced expressions create more complex networks, of course, including
intermediate collection and redistribution networks and cycles.



Discussion

What We Leamed

Many of the important lessons were at the implementation level:

1. Optimistic concurrency is a big help in programming multithreaded applications.
Serious deadlock problems, in which locks remained locked after errors occurred,
were avoided after instituting optimistic concurrency control.

2. A clean separation between the communication infrastructure and the internal
operation of a node helps a lot. The design has the code implementing a node
species reading and writing the node's mailboxes but not touching anything else.
There is, in effect, an asynchronous process responsible for shuffling information
out of outboxes and into connected inboxes.
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Appendix 1: Implementation details of ERATIC and
DERAIL

Scheduling

An ERA server maintains a set of ERA nodes. Each node has a set of actions, which can
be thought of as alternative ways in which that node might make progress. An action may
fail for various reasons, such as unavailability of an input or having no place to put an
output. If one action fails, a different one might succeed, such as one that manipulates
different sets of inputs and outputs.

Logically, each node is a separate process, repeatedly attempting to perform all of its
various actions in some unspecified order. In principle, a node could be implemented as
an independent operating system level process or thread. In practice, however, ERA has
its own node scheduler. There are several reasons for this:

1. Most threads have nothing to do most of the time. They are simply waiting for
something to change, such as the arrival of a message at an inbox, and can't make
progress otherwise.

2. Most of the mechanism of a process or thread would go unused by a node, which
only “waits” at a single point and therefore needs no stack. (If a node does need
stack, it must manage the stack itself, since the stack is state and needs to live
inside a mailbox; see below.)

3. Operating system processes/threads tend to be black boxes

For these reasons, The scheduler maintains a queue, the “ready queue”, for simple round
robin scheduling. Initially, all nodes known to a server are placed on the ready queue.
The scheduler runs a simple loop in which it removes a node from the ready queue and
runs its actions. Any node whose state changes for any reason, including a node whose
action runs to completion, is put back on the ready queue.

Communications

The scheduler runs concurrently - in alternation, actually - with the communications
network. The communication network is responsible for two kinds of transaction:

1. Message transmission across static links, i.e. moving a message from one node's

1., 66

outbox to that outbox's “peer” inbox.
2. Message transmission through the general communication switch, as per the call

and return protocols.

The two cases are distinguished by the simple and somewhat kludgey but effective
convention that an outbox with no peer is considered to be connected to the

communications network.

If the source and target of a message transfer are both within a single ERA server, there is
no real network traffic, and communication overhead is low. Otherwise, a TCP/IP
connection is established over the LAN or WAN to another ERA server. In the current



systems, a connection is set up and broken down for each message to be delivered.
However, we intend to optimize this procedure when it becomes important to pay
attention to performance. Connections could be kept alive with teardown after inactivity
and/or on an LRU basis. There might be one connection for each destination server pair,
or perhaps in high throughput situations individual TCP/IP connections devoted to peer
node pairs (nodes that are statically wired to one another).

In earlier versions of the prototype, communications occurred as part of a node's actions.
This had two unfortunate properties: first, the output and input were handled non-
uniformly; and second, that a failure to transmit output required recomputation of the
output from the inputs on subsequent attempts. After a number of bugs and confusions,
we settled on the present architecture, which we believe to be more robust, easier to
understand, and better for debugging. Its disadvantage is that it appears to double the
number of times a message is shuffled (node to outbox to inbox to node instead of node
to mailbox to node), but as this shuffling is usually just a pointer transfer.

Low-level communication in ERA follows a “push” model. If an outbox is full, then an
attempt is made to contact the target, either the outbox's peer, or the <to> address in the
memo. If the target is reachable, and has a place to store the message, then the message is
transferred from the outbox to the inbox. Otherwise no operation is performed. In a better
world, a stuck message, after some number of attempts or elapsed time, would result in a
distress call to be transmitted to someone who could do something about it.

Communication might also operate on a “pull” model, with an empty inbox attempting to
contact its peer (if it has one) to request a message. This doesn't sound very useful in the
current system, which is based on forward flow, but the idea should be kept on call
should it ever be needed in ERA's future.

Transmission of a memo, ERA's answer to RPC, is a sort of combination of push and
pull, since the argument is pushed to a named agent, and the result is virtually pulled
from it by virtue of the presence of the caller's continue-with address in the memo header.

Mailboxes and State

Nodes have mailboxes, which may be either empty or occupied by a message. (In the
current system, a message is always a memo, but this is not necessarily the case.)

Nodes aren't named, but mailboxes are. Each mailbox that needs one has a globally
unique identifier called its handle. A handle (mailbox name) rendered in XML resembles
<BOX UID="ERA-106-124'/>.

When a server starts up, it contacts a distinguished location (at Crystaliz this is a CGI
script run by an HTTP server running on one of our Linux machines) to obtain a prefix to
be used to generate fresh unique id. In the above example, the prefix is ERA-106-. There
may be many such servers as long as they always give out nonconflicting prefixes,
globally. If a server is unavailable, information on the UID generator state is read from
the most recent local ERA server checkpoint.
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ERA's services work best if the state of a node is visible to them. Migration and
checkpointing clearly require control over a node's state, and debugging is confusing and
perilous without it. A simple model of node state is essential if casual users are to be able
to understand and to manipulate agent networks with safety and confidence.

Node State Consistency

For this reason, any node desiring to play the ERA game properly must expose its state.
The mechanism for doing this is to keep all state in mailboxes. The term “mailbox” is a
bit misleading since mailboxes needn't be used for communication with other nodes; they
may simply be used for state storage by the nodes themselves.

A second requirement for proper operation of meta-tools and accessibility to the casual
programmer is consistency. No state should ever be observed that doesn't make sense in
the context of the activities taking place. For example, an identity node -- one that simply
copies its inbox to its outbox -- should never be seen in a state intermediate between the
before-move state and the after-move state. Suppose an identity node initially has empty
mailboxes, and a message M arrives at its inbox. An outside agent must observe either M
in the inbox and nothing in the outbox, or nothing in the inbox and M in the outbox.
States where M is “in transit” or “being copied”, such as empty mailboxes (followed at
some point by M appearing in the outbox) or both mailboxes containing M (followed by
M being erased from the inbox) must never be observed. The states may (and must) exist
ephemerally, but they must never be seen.

Protection against observation of intermediate states is important not only for the sake of
meta-tools, but also because the communications infrastructure itself both observes and

modifies mailboxes.

To achieve consistency, all activity of a node must appear to occur atomically. Ordinarily
in a concurrent system atomicity is achieved using locks. As a node runs, it either locks
each mailbox for exclusive access as it observes or modifies it, or (as with monitors /
Java synchronized) it lock its entire state (all of its mailboxes) for exclusive access at the
outset. When all operations for the current transaction are complete it releases all locks.

We initially tried this kind of concurrency control in the ERA node implementation.
While debugging various parts of the system - the node scheduler, the communications
network, and the logic of the various species of node - we often ran into problems of
locks being left locked for too long, usually due either to bugs in nodes or bugs in
Scheme 48's lock handling. These problems were alleviated by the employment of fo do
lists, which enforce optimistic concurrency control.

The purpose of a to do list is to reduce the period of time during which a set of resources
(mailboxes) is locked. The operation that takes place while the resources are locked will
definitely either succeed of fail in a very short period of time.

Here is how it works. A program that doesn't care about presenting consistent states to
observers simply reads and writes its state variables with abandon. To ensure consistency,



it instead reads and writes variables using a transaction supervisor -- substitute versions
of read and write that somehow prevent exposure of inconsistent states. The transaction
supervisor used in a database manager progressively locks each variable that is read or
written so that any attempt by another agent to read or write locked variables will block
until the lock is released (when the transaction commits).

The ERA transaction supervisor, on the other hand, instead creates a to do list. The to do
list holds two kinds of things:

1. Values that the agent proposes to write to its state variables. This makes sure that
the new values won't be seen until the transaction finally commits, guaranteeing
consistent views even while the transaction is in progress.

2. Items of the form “check to make sure that variable X still has value V”. These
items ensure that a consistent set of variable values will be written when the
transaction commits.

To read a variable under this scheme, the agent first looks in the to do list for a previously
written or read value, and uses one if it's there. If not, the true state is observed and
recorded as a check-it item in the to do list. To write a variable, the agent overwrites a
previously written value in the to do list, if there is one, and otherwise adds a new item to
the to do list.

When the modifications are complete, the transaction attempt to commit itself by a
simple atomic action. First, all check-it items on the to do list are checked. If any
variables have been modified from without, the to do list is discarded and the activity is
restarted from the beginning. This is safe because no state variables have been written
and no locks have been taken out. Second, having passed this test, all variables to be
written are given their new values.

Atomicity of commit can be enforced by taking an exclusive lock on the entire computer,
if necessary, since the commit will complete in very short order. In practice one can of
course do better than that.

Detail: An agent performing an optimistic transaction may observe inconsistent states.
For example, suppose that the sum A + B must be constant across transactions. If the
agent observes A, then a second agent consistently changes A and B together, and then
the agent observes B, then the observed B may not be consistent with the previously
observed A. However, the transaction observing the inconsistent state can never commit,
since it will have a failing not-modified check for A on its to do list. As long as the agent
will not do any damage as a result of observing the inconsistent state - and it cannot if it
is following the regime - the transaction will abort and will be retried, and all will
eventually be well.




Appendix 2: ERA User Manual
We include here the user manual is for the Java-based ERA server and visual editor (VERA).

ERA is an asynchronous, distributed computing environment that supports the interactive
design and development of distributed network applications. Using ERA’s VERA editor,
“casual” programmers can dynamically configure the workflow between autonomous agents,
specifying which agents talk to which, and how. Moreover, ERA enables the distributed
application designer to define and invoke hierarchical agent networks that are recursively
constructed from existing agents and networks, in a bottom-up manner.

Installing ERA

ERA relies on HTTP communication between ERA servers running on different hosts or
virtual machines, so an HTTP server such as Apache or IIS is required. ERA also requires a
Java servlet engine, such as Jakarta Tomcat. In addition to ERA’s Java classes, the following
jar files are required, and they must be included in the classpath of the computer system or
Java servlet (Jakarta Tomcat additionally requires jasper.jar, servletjar, webserverjar, and
xml.jar):

Java 2: tools.jar

Rhino: js.jar

J2EE: j2ee.jar, jhall jar, ejbl0deployment.jar

Apache XML: xerces jar, xalan.jar, xalanservlet jar, stylebook-1 .0-b3_xalan-2 jar
Sun XML: sunxmlparser.jar

Clark: xp.jar, xt.jar

A number of Java environment variables are also required by ERA, mainly for event log
settings. If Jakarta Tomcat is used for the servlet engine, these variables can be defined as
parameters in the web.xml file.

EventLogDataSource: event log ODBC data source name
EventLogDataSourceLoginID: event log ODBC data source login ID
EventLogDataSourcePassword: event log ODBC data source login password
EventLogTable: event Jog database table name
EventLogUpdatelntervallnSeconds: event log database update frequency
EventLogPersistencelntervallnDays: longevity of event log database entries
EventLogPriority: Event log Java process priority

Repository: name of the repository directory

ErrorReports: name of the error reports directory

Era Nodes

ERA agents are usually interconnected in a network, so we refer to them as Era nodes. A
node is either a simple primitive node provided by ERA, or a composite node, which may be
arbitrarily complex. The ERA programmer designs composite nodes as hierarchical networks
of interior nodes, which may be primitive or composite nodes. ERA provides a set of
primitive node types, from which composite nodes can be recursively constructed.
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Nodes communicate with each other asynchronously, through the transferal of messages
between ERA node mailboxes. Mailboxes are buffered ports that queue the node’s incoming
and outgoing messages, and store internal state parameters. A node’s inboxes and outboxes
store input and output data, respectively. A peer-to-peer connection is established between
pairs of inboxes and outboxes and collectively all the connections dictate the patterns of
dataflow in a network of nodes. Internal node state is stored in infernal boxes, which do not
have peer connections.

A node definition is an abstraction that specifies the behavior of a type of node, separate from
each instantiation and invocation of the node. ERA provides “built-in” definitions for all the
primitive nodes, and the ERA programmer may create composite node definitions that
recursively combine “uses” of existing node definitions, to form a hierarchical network. A
composite node definition declares the component “node uses” (references to existing
definitions) and specifies the mailbox connections to be established. Each primitive node
definition lists the required mailboxes of the primitive node, i.e., the names of mailboxes that
must be present in any use of the given primitive node. Mailbox types are optionally specified
in all node definitions, stating the type or supertype of message that a mailbox can store.

A composite node use is “instantiated” (as a node “instance’’) when ERA deploys the network
represented by a node definition. Because composite nodes are hierarchical, the instantiation
of a composite node may lead to the recursive instantiation of internal composite and primitive
nodes. Mailbox type declarations are checked for consistency when a node is deployed. If any
required mailboxes are missing, or mailbox peer types are inconsistent, ERA issues an Error
message stating the violations.

In Gopy Tuple Out

Figure 7: A Gizmo composite node

Every composite node has a pair of primitive nodes dedicated to receiving input messages and
posting output messages. In Figure 7, for example, a Gizmo composite node has an In node
and an Out node. These nodes enforce synchronized transferal of messages from their
inboxes to their outboxes, only doing so when all of the inboxes have messages available, and
all of the outboxes are free to accept them (that is, when their message queues are not full). In
contrast, AnyIn and AnyOut nodes transfer messages from inboxes to outboxes whenever
possible, in an asynchronous manner. A composite node can use either type of input or output
node.
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Agent Execution Environment

ERA nodes are instantiated and invoked within a “node manager”. This is an execution
environment that is responsible for handling meta-level requests to deploy, destroy, connect,
and disconnect nodes. The node manager is also responsible for scheduling the actions
associated with the deployed nodes, and for passing normal messages between connected
nodes. HTTP communication with a node manager takes place by way of an ERA server.
Several node managers may be associated with a single ERA server, while only a single ERA
server can live on a given host. Meta-messages containing node manager commands are sent
to the ERA server in the form of HTTP POST requests. The VERA editor can send a
RunDefinition command to a node manager, instantiating an instance of a named composite
node type, with input messages supplied by the user.

Once a node has been instantiated, it may be “invoked” any number of times, typically in
response to the dataflow of incoming messages. Primitive nodes are invoked as atomic
actions, in which all of the relevant mailboxes are updated synchronously, according to the
behavior associated with the primitive node type. Each primitive node has an action rule that
fires whenever the state of the node’s inboxes or outboxes changes. If all of the conditions
specified in the action rule are met, then the atomic action is executed. The action rule for an
In node, for example, specifies that all inboxes must be full and all outboxes must be empty,
in order to execute the atomic transfer of messages from the inboxes to the corresponding
outboxes.

ERA Node Namespace

Every instantiated ERA node receives a unique name by which the node is identified in event
log entries. The ERA node namespace is hierarchical, and each name has the form of a URL.
A node name URL starts with the host of the ERA servlet, followed by the node manager
index, and a user-supplied identifier for the node instance. Interior node names are inherited
from the “node use” IDs of the instantiated node definitions. For example, the node name

magenta/0/mynode/tuplel

refers to the an interior node “tuple1” of a composite node instantiated as “mynode”, in the on
node manager on host “magenta”. Multiply-deployed nodes of the same name are
distinguished by parenthesized indices, e.g., mynode, mynode(2), mynode(3), etc.. If the user
supplies no name, the node is named “rundef” by default. The VERA editor does not
currently accompany RunDefinition commands with node names, so the deployed nodes

receive the name “rundef”.

Message Types

All communication between ERA node managers, ERA nodes, and the VERA editor is
accomplished by passing XML-writable Message objects, or their XML-serialized
representation. Messages communicated between mailbox peers are passed in the form of
Message objects when the peers reside in the same node manager. Messages transferred
between nodes living in different node managers are passed in XML-serialized form.
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The following message types are defined in ERA. They include primitive data types
(Boolean, Double, String, etc.), compound data types (Tuple, Struct), ERA system data types
(Error, ErrorReport, Event), and XML-writeable representations of ERA nodes and mailboxes
(Node, NodeDef, Mailbox, MessageQueue).

Boolean: Message representation of a true/false Boolean value.

Double: Message representation of a double-precision real value.

Error: Brief description of a deployment or runtime error.

ErrorReport: Detailed description of an error, including the nodes and mailbox
contents relevant to the task in which the error occurred.

Event: ERA system event (e.g., mailbox transferral, action rule completlon etc.)
to be written to the event log.

Generic: Wrapper for a user-defined message type.

InstanceHandle: Pointer to a Java instance, produced by an active node and
passed as an argument to other active nodes.

Integer: Message representation of an integer value.

Labeled: A Boolean wrapper for an ERA message, containing a “yes” or “no” tag
to indicate the result of a meta-request. '

Mailbox: Message representation of an ERA mailbox, containing its name, type,
peer, and list of MessageQueues, one per active task.

Memo: A meta-message to be processed by a node manager. Memo types mainly
correspond to types of node manager requests (e.g., DEPLOY, CONNECT, etc.).
All messages sent to a node manager, from a VERA editor or another node
manager, are wrapped in Memos. Messages sent to Passive nodes via Java RMI,
as well as all messages stored in ERA node mailboxes, are wrapped in
MAILBOXMESSAGE Memos.

MessageQueue: Mailbox buffer of messages associated with a specific task.
Node: Message representation of an ERA node to be serialized (for an error
report or for redeployment), or to describe a “node use” in a node definition. The
node name (id), type and mailboxes are included.

NodeDef: Message representation of an ERA node definition, produced by the
VERA editor and interpreted by the node manager for node deployment.

Nothing: Message representation of a “null” value or “void” response.

String: Message representation of a string value.

Struct: A set of name-value pairs, each associating a string-valued name with an
ERA message.

Tuple: A list of ERA messages.

Primitive Nodes

There are several types of primitive nodes, with characteristic behaviors that are encoded in
their action rules. The primitive node types can be divided into three classes: dataflow nodes,
which simply define the flow of data through the network; data nodes, which relate to
structured data; and meta nodes, which invoke or communicate with processes outside of
ERA, or serve as the I/O interface for a composite node.
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Dataflow nodes

Copy: Any message arriving at a single inbox named “in” is copied to all of the
outboxes, as soon as they are all available for writing.

Merge: Any message arriving at any inbox is passed through to the single outbox
named “out”, as soon as it is available for writing.

AlternateIln: This node is similar to a merge node, except that the inboxes are
read in strict sequence, from one invocation to the next.

AlternateQut: This node is similar to a copy node, except that the outboxes are
written to in strict sequence, from one invocation to the next.

Mux: This node waits for distinct pairs of messages to arrive at its two inboxes
“in” and “control”. The “control” box contains a Tuple message naming a subset
of the node’s outboxes. The message found in the “in” inbox is copied to all of
the named outboxes, as soon as they are all available for writing.

Data nodes

Tuple: This node waits for all of its inboxes to receive messages, wraps the
messages in a Tuple, and writes the Tuple to the single outbox named “out”, as
soon as it is available for writing. A Tuple node can optionally contain a set of
internal boxes, whose nonvarying messages are prepended to any outgoing Tuple.
Detuple: Each Tuple message arriving at a single inbox named “in” is “detupled”
to obtain its component messages, which are written to the corresponding
outboxes (according to Tuple indices), as soon as they are all available for
writing.

Struct: This node waits for all of its inboxes to receive messages, wraps the
messages in a Struct of name-value pairs, and writes the Struct to the single
outbox named “out”, as soon as it is available for writing. A Struct node can
optionally contain a set of internal boxes, whose names and nonvarying message
values are added to the name-value pairs of any outgoing Struct.

Destruct: Each Struct message arriving at a single inbox named “in” is
“destructed” to obtain its component name-value pairs, and the named values
(messages) are written to the indicated outboxes, as soon as they are all available
for writing.

ParallelStruct: This node builds multiple Structs in parallel. A pair of messages
arriving at two inboxes named “id” and “keys” specifies each new Struct. The
“id” box gives a unique ID for the Struct, so that multiple Structs can be
referenced separately, and the “keys” box gives the field names of the new Struct.
The other inboxes receive Struct messages containing sets of name-value pairs, to
add to one of the Structs being built. Each input Struct’s “id” field indicates
which Struct-in-progress should receive the name-value pairs. Once a Struct
receives all of its required fields, it is written to the single outbox named “out”, as
soon as it is available for writing.

SequentialDetuple: Each Tuple message arriving at a single inbox named “in” is
“detupled”, and its component messages are sequentially written to the single
outbox named “out”, whenever it is available for writing.



Meta nodes

In: This node waits for all of its inboxes to receive messages and transfers them
to the outboxes with corresponding names, as soon as they are all available for
writing.

Out: This node is functionally equivalent to the In node. In and Out nodes are
treated as separate node types because of their distinct roles in a composite node,
where they handle input and output messages, respectively.

AnyIn: This node waits for any inbox to receive a message and transfers the
message to the outbox of the corresponding name, as soon as it is available for
writing.

AnyOut: This node is functionally equivalent to the AnyIn node. Anyln and
AnyOut nodes are treated as separate node types because of their distinct roles in
a composite node, where they handle input and output messages, respectively.
Synchronous: This node invokes a Java method for every set of arguments
received in its inboxes. The result of the method is passed to the single outbox
named “out”. A single Java class instance is created for the Synchronous node
when it is deployed. The Java class and method names are specified in internal
boxes “class” and “method”, and the inbox types determine the method signature.
An optional internal box “properties” can supply Java instance properties to set,
using the bean convention that a “setFoo” method exists for every property name
“foo”. ERA converts ERA message properties and arguments to and from Java
Objects and types whenever necessary. Tuple messages map to Java Object
arrays, and Struct messages map to Java Hashtables. Alternatively, an inbox or
outbox can be made to store Java object references by declaring the mailbox to be
of type InstanceHandle.

Invoke: This node is similar to the Synchronous node, except the method is
provided dynamically by way of an inbox called “method”, and the arguments
arrive in the form of a Tuple, in an inbox named “args”. The method signature is
determined dynamically by the method name and Tuple’s message types.

Eval: This node evaluates a fixed JavaScript expression for every set of inputs
received in its inboxes. Incoming messages are plugged into the JavaScript
expression, as variables named after the inboxes. The outboxes receive the
resulting values of namesake variables in the evaluated expression. The single
exception to this rule is that an outbox named “out” receives the overall result of
the expression, if such an outbox is present. ERA message argument conversion
to and from JavaScript is similar to that described for Synchronous nodes.

Decide: This node is a variation of the Eval node, in that it treats the inbox names
as JavaScript variables. A Decide node associates a JavaScript predicate
expression with each outbox, and the input is directed to the first outbox whose
expression evaluates to frue. The chosen outbox receives a Struct message
associating the inbox names with their contents.

Passive: A Passive node serves as a remote interface to an external Java program.
The Java program can send and receive ERA messages through the use of
PassiveNodeProxylnterface methods put and get. The put method takes a
MAILBOXMESSAGE Memo argument containing a Tuple, which the Passive
node stores in its “ins” internal box until it can distribute the detupled messages to
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its outboxes. The return argument is a Labeled message, whose yes/no value
indicates success or failure. A successful put returns a yes-Labeled message
containing a new task ID, in the form of a String message. The get method takes
the task ID as an argument and fetches the contents of the “outs” internal box,
which is a Tuple constructed from the Passive node’s inboxes, or null, if not all of
the inboxes have yet received input. A passive node can optionally receive LDAP
identifiers (C, O, OU, CN), to enable Java programs to locate a particular passive
node by name.

e Mailer: The Mailer node sends mail to an SMTP server. Its inboxes are “in”,
“from”, “to”, “subject”, “mime” (e.g., text/plain or text/html), and “smtpHost”, all
of which accept String messages. The “to” inbox can either take a single
recipient, or a Tuple of recipients.

Composite Nodes

A composite node’s behavior is essentially defined by the action rules of its constituent
primitive nodes, and by the mailbox connections set up between the mailbox peers.
Composite nodes can be composed of primitive and composite internal nodes, so a composite
node can represent an arbitrarily deep hierararchy of nested ERA node networks. The
instantiation of a composite node can be viewed as a recursive macro expansion of composite
node definitions, which bottoms out with the instantiation of the consituent primitive nodes.

Figure 8 illustrates the sequence of network states that a Gizmo composite node undergoes
after receiving a pair of input messages. Each successive state results from the successful run
of an action rule, or the transferral of messages between mailbox peers. After the In node
messages are synchronously passed from its inboxes (1) to its outboxes (2), the two messages
are transferred to inboxes of the Copy and Out nodes (3). The Out node’s action rule cannot
succeed until all three of its inboxes are full. The Copy node’s action produces multiple
copies of the incoming message (4), which are transferred to mailbox peers in the Tuple and
Copy nodes (5). The Tuple node’s action wraps its input messages in a Tuple message, which
is written to the outbox (6), and passed on to the mailbox peer in the Out node (7). All of the
Out node’s inboxes are now full, so its action rule finally succeeds, synchronously transferring
the three messages to the corresponding outboxes. The three outbox messages represent the

output of the composite node.
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Figure 8: Sequence of states in Gizmo composite node

Most meta-nodes perform processing tasks beyond the simple transferral and collating of
messages. These nodes generally execute Java methods or JavaScript evaluations, operating
on message Tuples stored in internal boxes named ins and outs, by convention. The action
rules transfer messages from the inboxes to the ins box, where they are wrapped as a message
Tuple, and from the outs box to the outboxes, which receive unwrapped Tuples of messages.
For Synchronous and Invoke nodes, a Java thread executes a Java class method on any Tuple
of arguments arriving in the ins box, passing the result to the outs box. JavaScript nodes of
type Eval and Decide similarly operate on Tuples of arguments found in the ins box, placing
the output in the outs box. A Passive node operates in an “inside-out” manner, receiving an
input Tuple in its outs box via RMI, and outputting a Tuple to its ins box, where it can
accessed via RML

Figure 9 shows the dataflow that takes place in these types of meta-nodes when they are
interconnected in a composite node. A Passive node serves as the I/O entry point for the
composite, enabling an external Java process to pass in a Tuple of messages as input. The
PassiveNodeProxyInterface put () method places the message Tuple in internal box outs, and
the get() method eventually obtains the result of the composite invocation, once it arrives in
the ins box. In this example, the input messages are passed to an Eval node, where a
JavaScript expression is evaluated to obtain the input (method and arguments) for an Invoke
node. The latter node’s result is passed back to the Passive node, to be fetched remotely via

RMI
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Passive

Figure 9: Data flow in Passive, Eval and Invoke nodes

Tasks

ERA executes action rules and transfers messages in the context of distinct fasks. Action rules
execute with respect to specific tasks, whose associated messages are kept in separate message
queues in the node mailboxes. The separation of messages related to different tasks makes
possible the parallel execution of multiple dataflows that share the same ERA nodes and
mailboxes, without interfering with each other.

Messages flowing through an ERA network are wrapped in Memos, which are tagged with
task IDs. Task IDs are generated by the PassiveNodeProxyInterface puf() method. The task
ID returned by put() is passed as an argument to the ge#() method, to ensure that the gex()
result will correspond to the correct task. When a RunDefinition command executes, the ERA
servlet communicates with the instantiated composite node by way of a Passive node that the
servlet instantiates along with the composite node instance.

VERA Editor

VERA (Visual-ERA) is a browser-based visual editor for designing node networks. VERA is
primarily an editor, but in future versions, it will serve as a runtime debugging tool, monitor,
and administrative tool. A Run operation is currently provided, to instantiate a composite
node of any given type, passing user-supplied input messages to the node’s inboxes.

VERA allows you to create and modify one node definition per window. You can drag and
drop a node from a file system-like outline view of a “Node Repository” to add a new use of
that node in the current definition. You can then make connections between nodes by
dragging between the in-boxes and out-boxes of each node, starting at either end. If the node
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or box you want to connect to has not yet been created, you can drop the end of a connection
anywhere and pick it up later to finish the connection.
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Figure 10: A VERA editing session for Gizmo composite node

A composite node definition may consist of any number of nodes within the scrollable view,
but it is a good programming practice to keep the size of a definition down to that which is
viewable without scrolling. Figure 10 shows an editing session for the Gizmo composite node
example, which first appears in Figure 8. Note that VERA displays Copy and Merge nodes
implicitly, as forks and merges in the connections. The forks and merges are expressed as
Copy and Merge “node uses” when the composite node definition is written to the repository.

As mentioned earlier, a composite node definition has two special primitive nodes of type In
and type Out. (or optionally, AnyIn and AnyOut), whose mailboxes serve as the input and
output boxes of the composite node. You may add, delete, or rename the available boxes of
these nodes, and connect their boxes up to the boxes of internal nodes.

As shown in Figure 11, you may save a definition to the ERA repository (assuming you have
write access) using the Save-As dialog. The editor will submit the XML encoding of the
definition to the ERA server using an HTTP POST. The URI of this saved definition is then
made available in the repository outline of node definitions, so that it may be used in other
definitions. Single-clicking on a node in the repository outline will show some information
about the node, enough to decide whether to use it, whereas double-clicking on the node will
pop up a new editor window for viewing and (if permitted) allow you to modify the node
definition.
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Error Handling and Debugging

ERA has basic facilities for catching and handling node deployment errors, as well as run-time
errors. Node deployment error handling includes type checking of mailbox peers, checking
for manditory mailboxes in primitive “node uses”, and failing to find a Java class or method
specified in a Synchronous or Invoke node. XML Parsing errors are also caught when loading
a node definition from the repository. Ia node deployment error occurs during a
RunDefinition operation executed from the VERA editor, an Error message is returned,
containing a brief description of the error.

Run-time errors in ERA include Java exceptions (for Synchronous and Invoke nodes),
JavaScript parsing or evaluation errors (for Eval and Decide nodes), and Message type
mismatches (e.g., a Detuple node inputting a message other than a Tuple message). When a
run-time error is caught by ERA, the task involved in the error is suspended, and an
ErrorReport message is created and stored in the designated ErrorReports directory. The
ErrorReport message contains a description of the error, along with a serialized description of
each node that was previously or currently involved in the task. If a Java exception is caught
by ERA, the Java stack trace is also included in the error report.

To further facilitate the debugging of composite nodes, ERA provides an Event Viewer, with
which to examine past events or view events as they occur in an active network. Types of
events logged by ERA include the following:

NEWTASK: Creation of a new task ID, typically via a Passive node get().
DEPLOY: Deployment of a composite or primitive node.

ACTION: Successful completion of a primitive node’s action rule.
READ: Destructive read of an inbox message.

WRITE: Outbox message write.
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As shown in Figure 12, the Event Viewer contains three panes: the Node Tree Pane, which
displays the node hierarchy of currently instantiated nodes; the Node Contents Pane, showing
all the nonempty node mailboxes that are descendents of the currently selected tree node; and
the Events Pane, displaying past or current events.
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Figure 12: Event log Ul

When debugging a composite node, it is often useful to determine how far the messages got in
the workflow and examine the contents of the messages, in order to determine whether the
workflow has been designed correctly. The Node Contents pane supports this kind of
detective work, displaying the nonempty mailboxes and their contents. Individual XML
messages can be examined more fully by clicking on the message’s table cell (with the red
XML text), bringing up a separate pane to display the entire message. The scope of the
mailboxes examined can be widened or narrowed as desired, by selecting tree nodes at various
levels in the node hierarchy.

The events shown in the Events Pane may be filtered in a number of ways, by adjusting the
settings in the filter dialogs accessed through the View menu. Events may be filtered with
respect to (1) the selected tree node (to view only the events involving the selected node or its
descendent nodes); (2) the time the event took place; (3) the type if event; and (4) the type of
primitive node involved. The Event Time Filter and Event Type Filter dialogs are shown in
Figure 13. The other filtering options are also accessed via the view menu.
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